For å løse de fleste problemene i matematikk på videregående skole, kreves kunnskap om proporsjonering. Denne enkle ferdigheten hjelper ikke bare med å utføre komplekse øvelser fra læreboken, men også fordype seg i selve essensen av matematisk vitenskap. Hvordan lage en proporsjon? La oss ta en titt nå.
Det enkleste eksempelet er et problem der tre parametere er kjent og den fjerde må finnes. Proporsjonene er selvfølgelig forskjellige, men ofte må du finne noen tall etter prosent. For eksempel hadde gutten ti epler tot alt. Han ga den fjerde delen til sin mor. Hvor mange epler har gutten igjen? Dette er det enkleste eksemplet som lar deg lage en proporsjon. Det viktigste er å gjøre det. Det var opprinnelig ti epler. La det være 100%. Dette merket vi alle eplene hans. Han ga en fjerdedel. 1/4=25/100. Så han har gått: 100% (det var opprinnelig) - 25% (han ga)=75%. Denne figuren viser prosentandelen av mengden frukt som er igjen over mengden frukt som var tilgjengelig først. Nå har vi tre tall som vi allerede kan løse andelen med. 10 epler - 100%, x epler - 75%, hvor x er ønsket mengde frukt. Hvordan lage en proporsjon?Det er nødvendig å forstå hva det er. Matematisk ser det slik ut. Likhetstegnet er for din forståelse.
10 epler=100 %;
x epler=75%.
Det viser seg at 10/x=100 %/75. Dette er hovedegenskapen til proporsjoner. Tross alt, jo flere x, jo flere prosent er dette tallet fra originalen. Vi løser denne andelen og får x=7,5 epler. Hvorfor gutten bestemte seg for å gi et ikke-heltall, vet vi ikke. Nå vet du hvordan du lager en proporsjon. Hovedsaken er å finne to forhold, hvorav det ene inneholder den ønskede ukjente.
Å løse en proporsjon kommer ofte ned til enkel multiplikasjon og deretter divisjon. Barn lærer ikke på skolen hvorfor det er slik. Selv om det er viktig å forstå at proporsjonale forhold er matematiske klassikere, er selve essensen av vitenskap. For å løse proporsjoner må du kunne håndtere brøker. For eksempel er det ofte nødvendig å omregne prosenter til vanlige brøker. Det vil si at en rekord på 95 % ikke vil fungere. Og hvis du umiddelbart skriver 95/100, kan du gjøre solide reduksjoner uten å starte hovedtellingen. Det er verdt å si med en gang at hvis andelen din viste seg med to ukjente, kan den ikke løses. Ingen professor kan hjelpe deg her. Og oppgaven din har mest sannsynlig en mer kompleks algoritme for riktige handlinger.
La oss vurdere et annet eksempel der det ikke er noen prosenter. Bilisten kjøpte 5 liter bensin for 150 rubler. Han tenkte på hvor mye han ville betale for 30 liter drivstoff. For å løse dette problemet, angir vi med x det nødvendige beløpet. Kanløs dette problemet selv og sjekk svaret. Hvis du ennå ikke har funnet ut hvordan du lager en proporsjon, så se. 5 liter bensin er 150 rubler. Som i det første eksemplet, la oss skrive 5l - 150r. La oss nå finne det tredje tallet. Selvfølgelig er det 30 liter. Enig at et par 30 l - x rubler er passende i denne situasjonen. La oss bytte til matematisk språk.
5 liter - 150 rubler;
30 liter - x rubler;
5/30=150 / x.
Løs denne andelen:
5x=30150;
x=900 rubler.
Så vi bestemte oss. I oppgaven din, ikke glem å sjekke tilstrekkeligheten til svaret. Det hender at med feil avgjørelse når bilene urealistiske hastigheter på 5000 kilometer i timen og så videre. Nå vet du hvordan du lager en proporsjon. Du kan også løse det. Som du kan se, er ikke dette vanskelig.